Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Antibodies (Basel) ; 12(1)2023 Feb 27.
Article in English | MEDLINE | ID: covidwho-2256959

ABSTRACT

In this retrospective cohort study, we investigated the formation of individual classes of antibodies to SARS-CoV-2 in archived serial sera from hospitalized patients with the medium-severe (n = 17) and severe COVID-19 (n = 11). The serum/plasma samples were studied for the presence of IgG, IgM and IgA antibodies to the recombinant S- and N-proteins of SARS-CoV-2. By the 7th day of hospitalization, an IgG increase was observed in patients both with a positive PCR test and without PCR confirmation of SARS-CoV-2 infection. Significant increases in the anti-spike IgG levels were noted only in moderate COVID-19. The four-fold increase of IgM to N-protein was obtained more often in the groups with mild and moderate infections. The IgA levels decreased during the infection to both the S- and N-proteins, and the most pronounced decrease was in the severe COVID-19 patients. The serum IgG to S-protein one week after hospitalization demonstrated a high-power relationship (rs = 0.75) with the level of RBD antibodies. There was a medium strength relationship between the levels of CRP and IgG (rs = 0.43). Thus, in patients with acute COVID-19, an increase in antibodies can develop as early as 1 week of hospital stay. The SARS-CoV-2 antibody conversions may confirm SARS-CoV-2 infection in PCR-negative patients.

2.
Int J Mol Sci ; 22(22)2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1524027

ABSTRACT

Severe outcomes of COVID-19 are associated with pathological response of the immune system to the SARS-CoV-2 infection. Emerging evidence suggests that an interaction may exist between COVID-19 pathogenesis and a broad range of xenobiotics, resulting in significant increases in death rates in highly exposed populations. Therefore, a better understanding of the molecular basis of the interaction between SARS-CoV-2 infection and chemical exposures may open opportunities for better preventive and therapeutic interventions. We attempted to gain mechanistic knowledge on the interaction between SARS-CoV-2 infection and chemical exposures using an in silico approach, where we identified genes and molecular pathways affected by both chemical exposures and SARS-CoV-2 in human immune cells (T-cells, B-cells, NK-cells, dendritic, and monocyte cells). Our findings demonstrate for the first time that overlapping molecular mechanisms affected by a broad range of chemical exposures and COVID-19 are linked to IFN type I/II signaling pathways and the process of antigen presentation. Based on our data, we also predict that exposures to various chemical compounds will predominantly impact the population of monocytes during the response against COVID-19.


Subject(s)
COVID-19/immunology , Immunity, Innate/drug effects , Xenobiotics/pharmacology , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/virology , Humans , Interferons/metabolism , SARS-CoV-2/isolation & purification , Signal Transduction/drug effects , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
3.
Front Microbiol ; 11: 1877, 2020.
Article in English | MEDLINE | ID: covidwho-769250

ABSTRACT

Our world is now facing a multitude of novel infectious diseases. Bacterial infections are treated with antibiotics, albeit with increasing difficulty as many of the more common causes of infection have now developed broad spectrum antimicrobial resistance. However, there is now an even greater challenge from both old and new viruses capable of causing respiratory, enteric, and urogenital infections. Reports of viruses resistant to frontline therapeutic drugs are steadily increasing and there is an urgent need to develop novel antiviral agents. Although this all makes sense, it seems rather strange that relatively little attention has been given to the antiviral capabilities of probiotics. Over the years, beneficial strains of lactic acid bacteria (LAB) have been successfully used to treat gastrointestinal, oral, and vaginal infections, and some can also effect a reduction in serum cholesterol levels. Some probiotics prevent gastrointestinal dysbiosis and, by doing so, reduce the risk of developing secondary infections. Other probiotics exhibit anti-tumor and immunomodulating properties, and in some studies, antiviral activities have been reported for probiotic bacteria and/or their metabolites. Unfortunately, the mechanistic basis of the observed beneficial effects of probiotics in countering viral infections is sometimes unclear. Interestingly, in COVID-19 patients, a clear decrease has been observed in cell numbers of Lactobacillus and Bifidobacterium spp., both of which are common sources of intestinal probiotics. The present review, specifically motivated by the need to implement effective new counters to SARS-CoV-2, focusses attention on viruses capable of co-infecting humans and other animals and specifically explores the potential of probiotic bacteria and their metabolites to intervene with the process of virus infection. The goal is to help to provide a more informed background for the planning of future probiotic-based antiviral research.

SELECTION OF CITATIONS
SEARCH DETAIL